Propulsion kinematics of achiral microswimmers in viscous fluids
نویسندگان
چکیده
منابع مشابه
Propulsion and Chemotaxis in Bacteria‐Driven Microswimmers
Despite the large body of experimental work recently on biohybrid microsystems, few studies have focused on theoretical modeling of such systems, which is essential to understand their underlying functioning mechanisms and hence design them optimally for a given application task. Therefore, this study focuses on developing a mathematical model to describe the 3D motion and chemotaxis of a type ...
متن کاملCollision of microswimmers in a viscous fluid.
We investigate the effects of boundary conditions on the surface of self-propelled spherical swimmers moving in a viscous fluid with a low Reynolds number. We first show that collisions between the swimmers are impossible under the commonly used no-slip conditions. Next we demonstrate that collisions do occur if the more general Navier boundary conditions, allowing for a finite slip on the surf...
متن کاملViscous Marangoni propulsion
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentrat...
متن کاملMagnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flag...
متن کاملAsymmetry and stability of shape kinematics in microswimmers' motion.
Many swimming microorganisms governed by low Reynolds number hydrodynamics utilize flagellar undulations for self-propulsion. Most of the existing theoretical models assume that the shape kinematics is directly controlled, while in reality, eukaryotes actuate internal bending moments along their flagellum. Under this control, the shape is dynamically evolving and periodic gaits may become unsta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2021
ISSN: 0003-6951,1077-3118
DOI: 10.1063/5.0048277